

Mediterranean Integrated System for Water Supply «MEDISS»

project Duration: August 1, 2019 - July 31, 2022

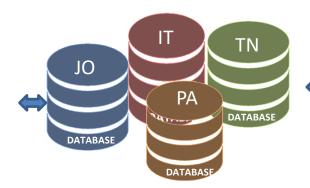
Technical meeting and study visit 8 - 10 November 2021 Aqaba - Jordan

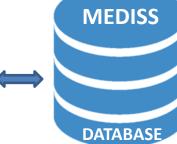
WP ACTIVITIES

WP3 TECHNICAL ACTIVITIES

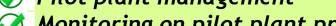
Data Collection (baseline)

Data base - data set and cartography for pilot area -(being implemented)


Monitoring (being implemented)



Equipments and consumables



WP4 PILOT PLANT

Pilot plant management

Monitoring on pilot plant process (experimentation) Equipments and consumables for plant (being implementation)

Tavola Rotonda del progetto RE-LIVE WASTE

Martedi 15 Dicembre 2020

Scenari futuri di sostenibilità ed economia circolare nelle produzioni zootecniche

	Agenda
10.00 - 10:15	Saluti di benvenuto e introduzione (D. Mulas – LAORE) (M. Gutierrez – UNISS)
10:15 - 10:30	Il progetto Re Live Waste, obiettivi e strategie. (A. Cincotti – UNISS) (D. Usai - LAORE)
10:30 - 10:40	La Direttiva Nitrati e l'esperienza di Arborea nella gestione degli effluenti zootecnici. (A.Manca - LAORE)
10:40 - 10:50	L'impianto pilota "Produzione Struvite"; aspetti tecnici ed economici (G. Ragaglia – UNISS)
10:50 - 11:00	Piani e programmi per le politiche di Sostenibilità e di Economia circolare nel settore Zootecnico (M. Gutierrez – UNISS)
11:00 - 12:00	Tavolo rotonda
12:00 - 12:10	Informare e comunicare la Sostenibilità e l'Economia circolare nel settore zootecnico (T. Solinas – UNISS)

Per partecipare all'evento:

https://us02web.zoom.us/j/84857987513Argomento: Tavola Rotonda RE-LIVE WASTE Ora: 15 dic 2020 10:00 AM Amsterdam, Berlino, Roma, Stoccolma, Vienna Entra nella riunione in Zoom https://us02web.zoom.us/j/82141101343

THANK YOU

MERCI

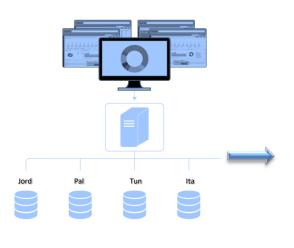
Mediterranean Integrated System for Water Supply «MEDISS»

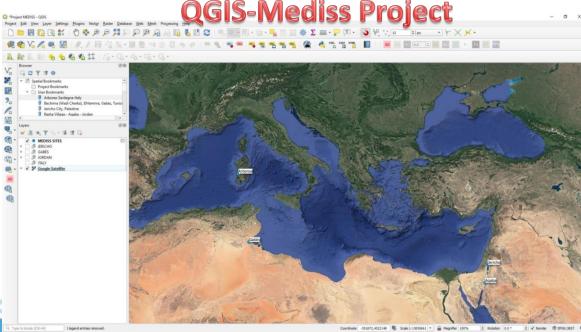
project Duration: August 1, 2019 - July 31, 2022

Technical meeting and study visit 8 - 10 November 2021 Aqaba - Jordan

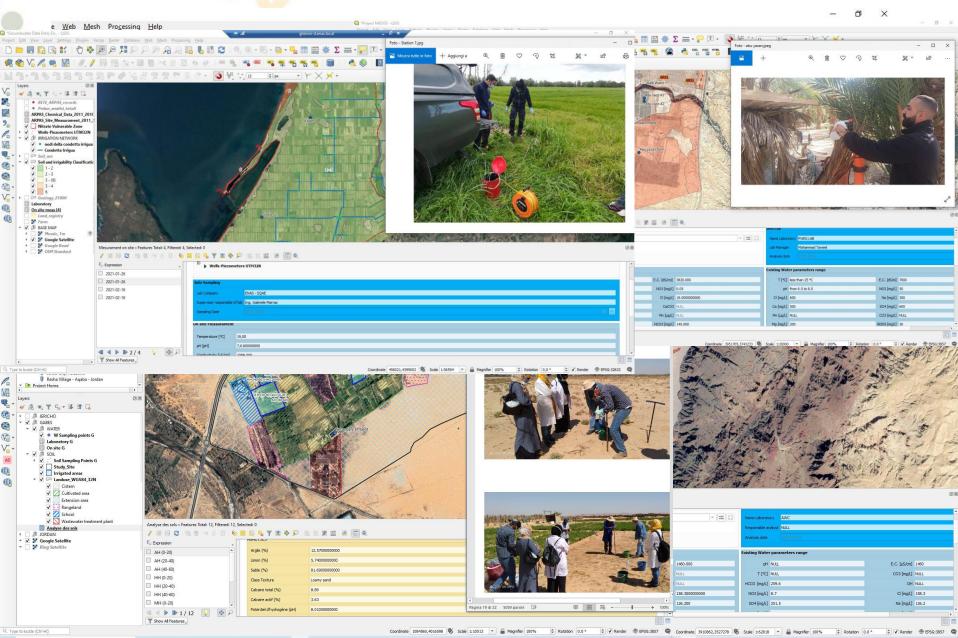
WP3 ACTIVITIES

Data Collection and GIS Applications





Main advantages of using QGIS software such as :


- •It's a open source (free download https://www.qgis.org/it/site/forusers/download.html);
- You can view the study areas and insert the monitoring points;
- •You can load select and save the monitoring data in the database and then analyzed them;
- •You make spatial analysis and relate them to the different environmental situations;

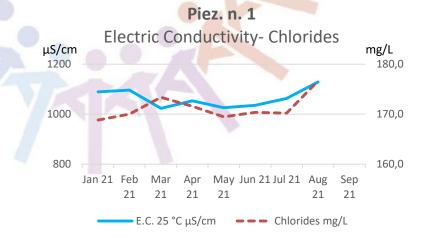
• You can create thematic maps.

Data Collection on QGIS

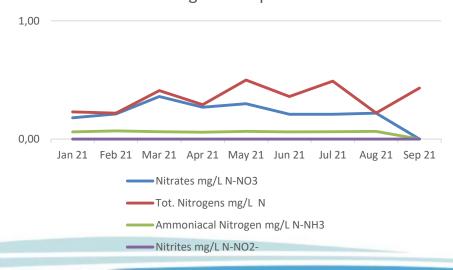
Arborea pilots area

Pilot areas for testing fertilizer

Results



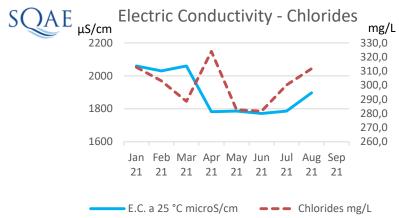
The first results (January 2021 - September 2021), show small variability in waters parameter in each site "white simple". In general rule piezometer n. 2 were characterized by higher levels of:

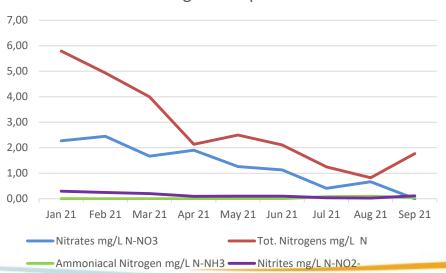

- Electric conductivity;
- Chlorides;
- Hardness, Ca, Mg, Na and K;
- Nitrates;
- Total Organic Carbon (TOC).

The stability in water parameters in each site helps us to detect possible changes that could occur during the experiment activity

Chemical and Biological water first results

Piez. n. 1Nitrogen Compounds





MEDISS

Piez. n. 2

Piez. n. 2Nitrogen Compounds

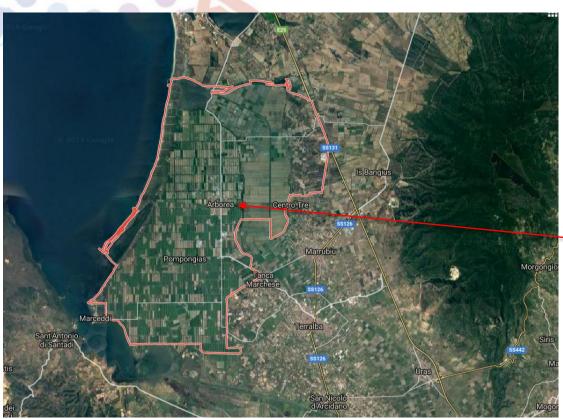
Mediterranean Integrated System for Water Supply «MEDISS»

project Duration: August 1, 2019 - July 31, 2022

Technical meeting and study visit 8 - 10 November 2021 Aqaba - Jordan

WP4 ACTIVITIES

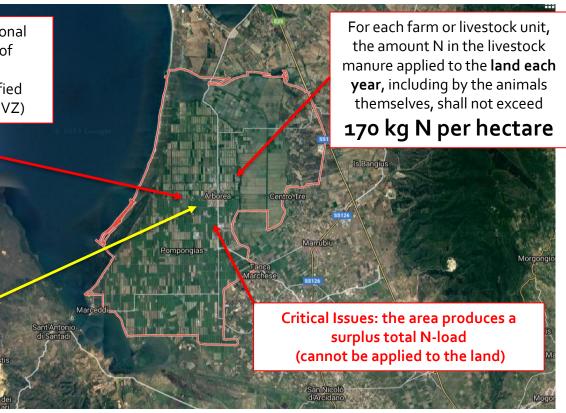
AMMONIA RECOVERY PILOT UNIT - PRELIMINARY RESULTS



The test pilot area in Sardinia: the Arborea plain

Arborea is a municipality in the province of Oristano and gives the name to a very extended area (6'000 ha) devoted to intensive cattle farming (for dairy and meat production) and agricultural activities: It represents an excellence in the Sardinian agro-livestock system

Farmers are associated into the "Cooperative producers of Arborea" that is today one of the most important hub of the Sardinian agricultural and livestock industry and gathers more that 200 members


The test pilot area in Sardinia: the context

Due to the intensive agricultural practices, the Regional Council of the Sardinia Region (resolution n. 1/12 of 01/18/2005,

according to the **EU directive 91/676/EWG**) classified the plain of Arborea a **Nitrate Vulnerable Zone** (NVZ)

AMS Experimental Pilot Unit

AIM OF THE PROJECT:

To evaluate the sustainability of a technology to reduce N-load in the manure produced n Arborea plain and to recover the ammonia fraction as a fertilizer (ammonium Sulphate) that can be stocked and reused in controlled way

Fattening calves centre

Livestock manures are treated by an anaerobic digester coupled by an high efficiency power cogenerator feeded by the produced biogas

The high concentration of Nitrogen, above 2000 mg/L is suitable for the experimentation

Ammonia Recovery Scheme

Anaerobic digestate 1800 mg/L NH₄

Liquid fraction Anaerobic digestate

1800 mg/L NH₄

Effluent disposal
100 mg/L NH₄
Recovery efficiency 90 %

AMMONIA MEMBRANE STRIPPING UNIT

Solid fraction disposal

PRE-TREATMENT

VIBRATING SCREEN UNIT

(mesh size 50µm)

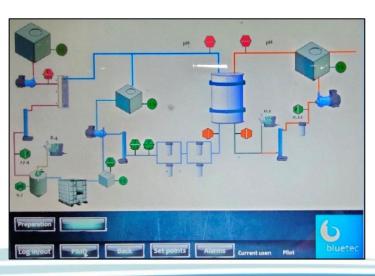
Final Product $(NH_4)_2S0_4$ (2% as N)

Ammonia Recovery from anaerobic digestate by means of

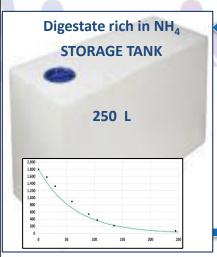
gas permeable membranes
March 2021 – pilot plant installation

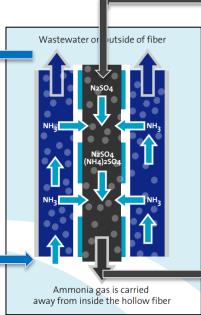
Ammonia Recovery from WWTP digester by means of gas permeable membranes

June 2021 – Press conference – inauguration and start-up of the pilot plant



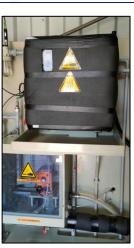
August 2021 – Beginning of the experimental activity





Ammonia Membrane Stripping Batch Process

The caustic digestate stream is lead to the feed side of a gas permeable membrane. NH₃(g) passes through the membrane


At the product side of the membrane the acidified stream transforms the NH_3 into ion-form NH_4 + which forms ammonium sulfate $(NH_4)_2SO_4$

HYDROPHOBIC GAS PERMEABLE MEMBRANE

Pilot Plant Experimental activity programm

Optimization of the Ammonia Stripping Process

- 1) Adjustment of the process parameters
 - •pH (feed line) and (acid line)
 - •Temperature (feed line) and (acid line)
 - •Flow rate (feed line) and (acid line)
 - •Number of membrane modules to be used
- 2) Modeling of the change in Ammonia concentration
 - •Determination of Ammonia mass transfer coefficient

Optimization of the Chemical Analysis Protocol

- 1. Sampling frequency
- 2. Testing reliability of field Ammonia spectrophotometer (GMSOLUTION SrI)
- 3. Testing reliability of field Ammonia on-line sensor
- 4. Double sampling is also repeated to analyze the same parameters at the main chemical laboratory according to the standard methods analysis
- 5. Chemical characterization of the final product (ammonium sulphate)

AIM: producing ammonium sulphate (NH₄)₂SO₄

Ammonia Recovery from WWTP digester by means of gas permeable membranes

FIELD CHEMICAL ANALISYS SETUP

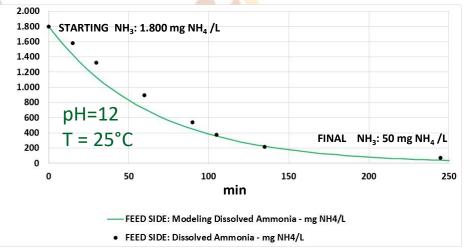
DIGESTATE SAMPLE

	CAUSTIC SIDE				ACID SIDE			
time (min)	рН	cond (mS/cm)	T (°C)	CAUSTIC SIDE: Ammonia - mg NH ₄ /L	рН	cond (mS/cm)	T (°C)	ACID SIDE: Ammonia - mg NH ₄ /L
0	12,00	37,80	22,00	1.800	1,39	58,90	18,50	0
15	12,29	39,30	21,90	1.580	1,84	38,10	31,30	1.300
30	12,62	47,80	22,00	1.320	2,33	34,30	21,80	2.050
60	12,87	63,50	22,50	890	2,28	39,00	23,10	2.650
90	12,86	67,80	23,70	540	2,48	40,00	24,00	3.700
105	12,76	67,50	24,90	370	2,33	40,80	24,90	4.360
135	12,72	67,00	25,80	215	2,37	43,00	25,60	4.840
245	12,71	65,90	27,90	66	3,15	41,10	28,10	5.220


Ammonium
Sulphate fertilizer
(up to 2% N)
SAMPLE

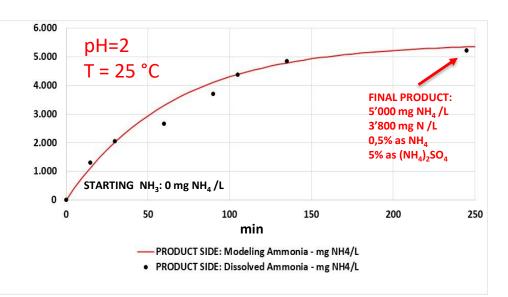
SAMPLING

pH, T sensor


NH₄ vials

NH₄ spectrophotometer

PRELIMINARY RESULTS



DIGESTATE SAMPLE

FEED LOOP SIDE (1 run)

STORAGE VOLUME: 260 L

TOTAL NH₃ LOAD PASSED: 455g NH₄

Ammonium
Sulphate fertilizer
(up to 2% N)
SAMPLE

PRODUCT LOOP SIDE (1 run)

STORAGE VOLUME: 65 L

FINAL TOTAL NH $_3$ LOAD STORED : 455g NH $_4$

REMARKS

- The Ammonia Membrane Stripping technology (AMS) is able to recover the ammonium from the digestate produced by the anaerobic sewage treatment unit located in the fattening calves center of Arborea
- The Ammonia removal/recovery efficiency of the pilot unit has reached up to 95%
- The recovered Ammonia has been converted into a solution of ammonium sulphate $(NH4)_2SO_4$ and its concentration depends on the amount of Ammonia recovered in the pilot unit (number of cycles). After three cycles the concentration of the ammonium sulphate $(NH4)_2SO_4$ solution reached about **18'000 mg NH₄/L**
- **pH** and **specific flow rate** on the membrane have high influence on the recover efficiency. **Optimization of pH is still in progress**.
- The local regional temperature of the digestate has been suitable to reach an excellent Ammonia removal/recovery efficiency (it was not necessary to increase of temperature)
- Due to the high content of SS (fraction < 50 μm), filter cartridges must be frequently replaced
- The concentration change of Ammonia in the digestate volume follow a first-order kinetics (the calculation of the mass transfer coefficient is progress)

THANK YOU

